Proton decay of excited states in ¹²N and ¹³O and the astrophysical ¹¹C(p,γ)¹²N reaction rate

L. G. Sobotka, W. W. Buhro, R. J. Charity, J. M. Elson, M. F. Jager, J. Manfredi, M. H. Mahzoon,
A. M. Mukhamedzhanov, V. Eremenko, M. McCleskey, R. G. Pizzone, B. T. Roeder,
A. Spiridon, E. Simmons, L. Trache, M. Kurokawa, and P. Navrátil

Using a ¹³O beam, we have observed proton decays of ¹²N and ¹³O excited states following proton-knockout and inelastic interactions on a 9Be target. The excited states were determined from detected two- and three-body exit channels using the invariant mass method. The width of the second excited state of ¹²N was determined to be 55(20) keV, considerably smaller than the value listed in the ENSDF data base. Three new excited states of narrow width (\leq 50 keV) were observed in ¹³O from the p+¹²N and 2p + ¹¹C exit channels. One of these states (E_x = 3.67 MeV) was found to sequentially decay to the second excited of ¹²N. We again found these data to be inconsistent with the listed decay width. The ramifications for the astrophysically interesting ¹¹C(p, γ)¹²N reaction are given. The work has been published in Phys. Rev. C **87**, 054329 (2013).